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In problem 1 below we analyze the strategic form of the alternating
offer bargaining game, and discuss rationalizable and Nash Equilibrium
(NE) strategies - with the view of having them as a reference point for
comparison with subgame perfect equilibria (SPE) outcomes of the game
which we will discuss in the lecture notes 3.

Problem 1 (Strategic form of the bargaining game)

We consider an alternating offer bargaining game à la Rubinstein (1982). Two
players negotiate on how to split a pie of size 1. There is infinitely many stages-
opportunities to agree on the split of the pie. The game begins with period 1, where
player 1 suggests that she gets a share x1

1
∈ [0, 1] of the pie, and player 2 gets a

share 1 − x1
1
. Provided that the agreement has not been reached prior to period t,

player 1 makes an offer xt
1
∈ [0, 1] if t is odd, and player 2 makes an offer xt

1
∈ [0, 1]

if t is even. Future is discounted by a factor of δ: if players agree on the split xt
1

in period t, then the payoff of player 1 is δt−1xt
1
, and the payoff of player 2 is

δt−1(1− xt−1). The payoff to never reaching an agreement is 0 for both players.

a) Give a formal definition of a strategy for players 1 and 2

Solution. Informally, a strategy of a player in a dynamic game is a
history contingent plan of actions. Formally, let Hi be the set of informa-
tion sets of player i in a game.1 Then, a strategy for player i,si, is a map-
ping from the set of i’s information sets into the set of probability distri-
butions over actions available at information set hi ∈ Hi. Following the
lecture notes, let Ai(hi) be the set of actions available to player i at infor-
mation set hi. Then, the (behavioral) strategy is si : Hi → ∆(Ai) such
that supp(si(hi)) ⊂ Ai(hi). In words: a strategy specifies which action
(mixed or pure) a player i takes given that his information set (history) is
hi with the restriction that the strategy must not prescribe actions which

1Information set is defined in lecture notes 1



are not available at the given information set. In the bargaining game de-
scribed above, when it is time for player 1 to move in period t, the set
of his period t information sets is Ht

1
:= [0, 1]t−1 - that is, the set of all

possible offers players made up until period t, with the convention that
H1 := ∅. Then, the set of all information sets of player 1 in the game is
H := ∪∞t=1

Ht = ∪∞t=1
[0, 1]t−1. Define an element of Ht by ht, and then

the (behavior) strategy is a map, s1 : ∪∞t=1
[0, 1]t−1 → ∆(A1), such that

supp(s1(h
t)) ⊂ {accept, refuse} if t is even; and supp(s1(ht)) ⊂ [0, 1] if

t is odd. That concludes defining a strategy for player 1. Definition of a
strategy for player 2 is similar to that of player 1, and therefore is omitted
here.

b) Consider the following strategy of player 2: “Regardless of the his-
tory of the game, refuse all offers but xt

1
= 0 in the odd periods, and

always offer xt
1
= 0 in the even periods". Is this strategy rationaliz-

able? Does your answer depend on δ?

Solution. Now, notice that ht is a t-dimensional vector of offers made
in the game prior to period t. Denote tth element of the vector by ht(t).

Formally, the strategy for player 2 is

s
′
2(h

t) =


0 if ht ∈ Ht

2
and t is even,

refuse if ht ∈ Ht
2

and ht(t) 6= 0 and t is odd,

accept if ht ∈ Ht
2

and ht(t) = 0 and t is odd

Consider the following strategy for player 1:

s
′
1(h

t) =

0 if ht ∈ Ht
1

and t is odd,

accept if ht ∈ Ht
1

and t is even

Then, s
′
1

is a best response to s
′
2
, s

′
2

is a best response to s
′
1
, and hence

strategy profile (s
′
1
, s

′
2
) constitutes NE of the game. Further, NE strategy is

a best response, hence rationalizable.

c) Can you construct Nash Equilibrium where the agreement is reached
in period 100 with any division of the pie?

Solution. Yes. The construction is similar to that of part b), more details
are in the class.



As opposed to NE, SPE imposes sequential rationality which makes it
an attractive solution concept for multi-stage games. In problem 2 we com-
pare NE predictions to SPE predictions of the important multi-stage game
which was first analyzed in evolutionary biology to study a conflict where
two players compete for an exclusive resource. In economics this game has
been applied to study, among other things, R&D races and political lobby-
ing.

Problem 2 (SPE in the war of attrition)

Two players are fighting for a prize whose current value at any time t =

0, 1, 2, ... is v > 1. Fighting costs 1 unit per period. The game ends as soon as
one of the players stops fighting. If one player stops fighting in period t, he gets no
prize and incurs no more costs, while his opponent wins the prize without incur-
ring a fighting cost. If both players stop fighting at the same period, then neither
of them gets the prize. The players discount their costs and payoffs with discount
factor δ per period.

This is a multi-stage game with observed actions, where the action set for each
player in period t is Ai (t) = {0, 1}, where 0 means continue fighting and 1 means
stop. A pure strategy si is a mapping si : {0, 1, ...} → Ai (t) such that si (t)
descibes the action that a player takes in period t if no player has stopped the game
in periods 0, ..., t − 1. A behavior strategy bi (t) defines a probability of stopping
in period t if no player has yet stopped.

a) Consider a strategy profile s1 (t) = 1 for all t and s2 (t) = 0 for all t.
Is this a Nash equilibrium?

Solution. This is an equilibrium: given the behavior of player 2, player
1 has no incentive to fight. Player 2 gets utility v so he has no incentive to
deviate.

b) Find a stationary symmetric Nash equilibrium, where both players
stop with the same constant probability in each period.

Solution. (By stationary one means equilibria with strategies that are
independent of t.) Let p be this probability of stopping. The condition for a



mixed strategy equilibrium is that a player is indifferent between fighting
and dropping out. In any period the utility from fighting in the present
period is pv+(1−p) · (−1), since player 2 succumbs with probability p and
fight with probability 1−p. The continuation value (value of the future that
arises after (0, 0)) is zero. Players mix in the next period which implies that
they are indifferent between fighting and stopping. Stopping gives a zero
payoff, and hence the expected payoff after any action in the support of
the mixed strategy is also zero. Therefore, we can ignore the continuation
value. The utility from dropping out is 0. Thus the equilibrium condition
is

pv+ (1− p) · (−1) = 0

p =
1

1+ v

c) Are the strategy profiles considered above subgame perfect equilib-
ria?

Solution. This is because all stationary Nash equilibria are subgame
perfect equilibria for stationary multistage games. In the game in question,
previous fights are sunk cost and the time horizon in infinite, and hence all
periods are equivalent to the first period. Therefore, the same argumenta-
tion, which was used for period 1 in a) and b), can be used for later periods
as well. All stationary NE satisfy the one-step deviation condition.

d) Can you think of other strategy profiles that would constitute a sub-
game perfect equilibrium?

Solution. The equilibrium in (a) can obviously be reversed: where
player 1 stops immediately and player 2 never stops: s1 (t) = 0 for all t
and s2 (t) = 1 for all t. We could also combine profiles in a) and b). For
example, the following is a SPE:

s1 = (1,p,p, . . . )

s2 = (0,p,p, . . . ).

There is also a mixed strategy equilibrium, where players stop every
second period with probability ρ, i.e. their strategies assign probabilities



(0, ρ, 0, ρ, 0, ...) and (ρ, 0, ρ, 0, ...) to quitting. The argument why this works
is similar to the symmetric equilibrium. The important condition is that the
player who is mixing between stopping and continuing must be indifferent
(the value of the game is zero for her).

The player who is not mixing has a value: ρv + (1 − ρ)(−1). (The not
mixing player will mix in the following period, and hence her continuation
value is zero.) The player, who is mixing now, has a continuation value of
δ(ρv+ (1− ρ)(−1)). Her indifference condition yields:

δ(ρv+ (1− ρ)(−1)) − 1 = 0

⇔ ρ =
1+ δ

δ(1+ v)
.

Can you see why there cannot be a period in which both players fight
with probability one?

SPE is our “default" solution concept for multi-stage games, therefore
it is important to carefully and critically examine it. In problem 3 we com-
pare NE and SPE outcomes of the simple games with their actual play in
experimental setting [based on Goeree and Holt (2001)].



Problem 3 (Experimental evidence on SPE)

a) Consider the extensive form of the game in Figure 1. What are NE
and SPE of the game? In the experimental setting, 16% of randomly
matched pairs played the game with the outcome of (80, 50), and the
rest played the game with the outcome of (90, 70). How do you in-
terpret this finding, as in what does it tell us about SPE as a solution
concept?

PLAYER 1

(80, 50)

l

(20, 10)

L

(90, 70)

R

r

PLAYER 2

Figure 1: Should you trust others to be rational?

Solution. Strategic form of the game in Figure 1 is presented in Table
1. (l,L) and (r,R) are pure strategy NE. Further, denote probability that
player 1 chooses l by σ1, and probability that 2 chooses r by σ2. Next,
notice that if there exists a mixed-strategy equilibrium of the game, it must
be the case that in such equilibrium σ1 = 1, since this is the only way player
2 could be indifferent between L and R. Therefore, there exists a continuum
of mixed-strategy NE {(σ1,σ2) : σ1 = 1,σ2 > 1

7
}.

L R

l 80, 50 80, 50

r 20, 10 90, 70

Table 1: Strategic form of the game in Figure 1

The only SPE of the game is (r,R). I would interpret the finding as
supporting the refinement of NE suggested by SPE.

b) Consider the extensive form of the game in Figure 2. What are NE



and SPE of the game? How do you think empirical distribution of
outcomes changes compared to the game in a) and why?

PLAYER 1

(80, 50)

l

(20, 68)

L

(90, 70)

R

r

PLAYER 2

Figure 2: Revisited “Should you trust others to be rational?"

Solution. Strategic form of the game in Figure 2 is presented in Table
2. (l,L) and (r,R) are pure strategy NE. Further, denote probability that
player 1 chooses l by σ1, and probability that 2 chooses r by σ2. Next,
notice that if there exists a mixed-strategy equilibrium of the game, it must
be the case that in such equilibrium σ1 = 1, since this is the only way player
2 could be indifferent between L and R. Therefore, there exists a continuum
of mixed-strategy NE {(σ1,σ2) : σ1 = 1,σ2 > 1

7
}. The only SPE of the game

is (r,R).

L R

l 80, 50 80, 50

r 20, 68 90, 70

Table 2: Strategic form of the game in Figure 2

Informally, I would think that here player 1 was more likely to play l,
since as opposed to the game in part a), player 2 does not have “clear"
preference for playing R, and therefore player 1 might not trust that player
2 is attentive/rational enough to play R. This corresponds to the finding
in Goeree and Holt (2001) - 52% of the randomly matched pairs played the
game with the outcome (70, 60) [reflecting the idea that player 1 does not
trust player 2 to be “rational"]; 12% of the games ended with the outcome
(20, 68) [confirming that player 1 is correct not to trust in “rationality" of
player 2]; and 36% played (90, 70).



Goeree and Holt (2001) try to spin the result as exhibiting the flaws of
SPE, claiming that sometimes SPE might be refining too “rigorously" . My
opinion is that the individuals in the lab played a game which is different
from the one depicted in Figure 2 - in particular, players in the lab could
not really know payoff functions of their opponents and therefore could
not exclude that there were some “evil" -type opponents in the game, who
cared about minimizing other players’ monetary payments. But then, of
course, they are playing a different game than the one depicted in Figure 2,
and whatever happened in the lab should not tell us much about what the
outcomes of the experiment would have been if players really partook in
the correct game.

c) Consider the extensive form of the game in Figure 3. What are NE
and SPE of the game? In the experimental setting, 12% of randomly
matched pairs played the game with the outcome (70, 60), and the rest
played the game with the outcome of (90, 50). How do you interpret
this finding?

PLAYER 1

(70, 60)

l

(60, 10)

L

(90, 50)

R

r

PLAYER 2

Figure 3: Should you believe a threat which is not credible?

Solution. Strategic form of the game in Figure 3 is presented in Table
3. (l,L) and (r,R) are pure strategy NE. Further, denote probability that
player 1 chooses l by σ1, and probability that 2 chooses r by σ2. Next,
notice that if there exists a mixed-strategy equilibrium of the game, it must
be the case that in such equilibrium σ1 = 1, since this is the only way player
2 could be indifferent between L and R. Therefore, there exists a continuum
of mixed-strategy NE {(σ1,σ2) : σ1 = 1,σ2 > 2

3
}. The only SPE of the game

is (r,R).



L R

l 70, 60 70, 60

r 60, 10 90, 50

Table 3: Strategic form of the game in Figure 3

(l,L) relies on the not credible threat of player 2 to go L when it is his
turn to move.

d) Consider the extensive form of the game in Figure 4. What are NE
and SPE of the game? In the experimental setting, 32% of randomly
matched pairs played the game with the outcome (70, 60), 32% played
the game with the outcome of (60, 48) and the rest played the game
with the outcome of (90, 50). Does this empirical distribution support
SPE? Why?

PLAYER 1

(70, 60)

l

(60, 48)

L

(90, 50)

R

r

PLAYER 2

Figure 4: Revisited “Should you believe a threat which is not credible?"

Solution. Strategic form of the game in Figure 4 is presented in Table
4. (l,L) and (r,R) are pure strategy NE. Further, denote probability that
player 1 chooses l by σ1, and probability that 2 chooses r by σ2. Next,
notice that if there exists a mixed-strategy equilibrium of the game, it must
be the case that in such equilibrium σ1 = 1, since this is the only way player
2 could be indifferent between L and R. Therefore, there exists a continuum
of mixed-strategy NE {(σ1,σ2) : σ1 = 1,σ2 > 2

3
}. The only SPE of the game

is (r,R).



L R

l 70, 60 70, 60

r 60, 10 90, 50

Table 4: Strategic form of the game in Figure 4

Problem 4 below demonstrates issues with using SPE for analysis of
dynamic games with incomplete information.

Problem 4 (SPE in games with incomplete information)

a) What are SPE of the game in Figure 5? Are all of them sequentially
rational?

PLAYER 1

(3, 3) Out

(4, 4)

l

(1, 2)

r

L

(2, 1)

l

(0, 0)

r

R

PLAYER 2

Figure 5: Deadlock game with an outside option

Solution. The game in Figure 5 has no proper subgames, and therefore
the sets of NE and SPE coincide. To find NE of the game, we represent the
game in the strategic form in Table 5.

l r

Out 3,3 3,3

L 4,4 1,2

R 2,1 0,0

Table 5: Strategic form of the game in Figure 5

Pure strategy SPE of the game are (Out, r) and (L, l). Further, similar to
problem 1, there is a continuum of mixed-strategy equilibria.

b) In the game of Figure 6, Nature chooses L with probability 3

4
and R

with probability 1

4
. What are SPE of the game?



NATURE

(3, 3)

Out

(5, 1)

l

(0, 0)

r

T

L

(3, 3)

Out

(4, 4)

l

(1, 5)

r

T

R

PLAYER 2

PLAYER 1

Figure 6: SPE supported by inconsistent beliefs

Solution.The game in Figure 6 has no proper subgames, and therefore
the sets of NE and SPE coincide. To find NE of the game, we represent the
game in the strategic form in Table 6.

l r

Out 3,3 3,3

T 19

4
, 7
4

1

4
, 5

4

Table 6: Strategic form of the game in Figure 6

Two pure-strategy SPE are (Out, r) and (T , l).

Problem 5 (Perfect Bayesian Equilibrium) What are Perfect Bayesian Equi-
libria of the game in problem 4?

Solution. In the game of part a), the unique PBE is (L, l) since regard-
less of the belief system, player 2 will play l when he finds himself at the
information set where his decision is needed, and as opposed to SPE - PBE
forces us to define the belief system. In the game of part b), all the SPE are
also PBE since PBE gives us freedom to choose beliefs at the information



sets which are reached with probability 0 in equilibrium. Hence the need
for the sequential equilibrium, which we will discuss in the next problem
session.
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